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COVER P H 0 TO: 

GLOBAL SINGAPORE COAST EARTH 

Nestled between the existing mighty dishes o f  the lntelsat system, Singapore’s coast earth station 

was commissioned by the Telecommunication Authority of Singapore on November 1, 1982. This 

operates towards the Pacific Ocean Region satellite of the (International Maritime Satellite 

Organisation) system. This is the first maritime satellite coast earth station in South East Asia and it is intended 

to handle the ship-to-shore, shore-to-ship and ship to  ship telex, telegram, telephone, data and telefax calls of 

the maritime community in Singapore as well as in the SEA region. 

Courtesy of Telecommunications Authority Singapore. 
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ABSTRACT 

The increasing use of computers in Singapore makes it imperative for engineers to under- 
stand the power as well as the limitations of the finite element method. The paper describes 
the basic principles of the method and discusses its advantages, fields of application, and the 
potential dangers of its misuse. 

Finite element method is a relatively recent computer-based technique of structural and 
stress analysis that has become a very powerful and popular tool within the last twenty to 
twenty-five years. 

In this short period, scores of books, hundreds of reports, and thousands of papers have been 
published on the principles and applications of the method. The reasonsfor its popularity are 
its versatility and power; but the reason for its quickgrowth is the phenomenal development of 
digital computers. 

Because of the suddenness with which the finite element method appeared on the 
engineering scene, and the speed with which it has grown in certain parts of the world, those 
practising engineers in other parts of the world, who have not had the benefit of computer 
training as well as finite element background, have been “left behind”, in a sense. 

Many such engineers have learnt to use specific computer programs, but it would be 
dangerous to use finite element programs without knowing their strenghts and weaknesses, 
and without understanding the consequences of improper of real-life problems. 

The principles involved, the terminology used and the skills needed for finite element analysis 
are often so different from their classical engineering counterparts, that it is also not easy for a 
practising engineer who has not had a formal course in the subject, to study independently 
and catch up with the still advancing state of the art in finite elements. 

But civil, mechanical and other engineers must learn the art and science of finite elements, 
and the sooner the better. The method is here to stay; to be fair, it is by far the most general, 
the most powerful, the most efficient, the most precise, and in actual application (as 
contrasted with its theoretical aspects) the simplest of investigative, analytical and design 
tools available today, especially for the complicated situations that modern engineering and 
technology involve. 

INSTITUTION OF ENGINEERS, 

N. Krishnamurthy
Note
I wrote this 23 years ago this month (July 2006). The size, speed, and power of the computers have increased millions-fold. But concept and the philosophy remain the same. In fact, dangers of misuse and abuse of FEM has actually increased, because the new generations of users take the method for granted! - N. Krishnamurthy



In this paper, the author presents the basics of the finite element method in simple, 
mathematical terms, discusses its advantages and dangers, and hopes to share his 
experience of over fifteen years with teaching the subject, and with using the method in his 
research and consulting. The twin objectives of the presentation would be to convince the 
skeptic of the power of the method, and to caution the zealot of its perils. 

2. PRINCIPLE 

The idea itself is not new. All of us who have had to analyse an arch with varying cross-section 
as in Fig. have always divided it into a certain number of segments, each assumed 
straight and prismatic, as in Fig. 1 (b). The continuously curved non-prismatic structure would 
thus be “discretised’ or into a certain limited number of segments of known 
be havi ou r patterns. 

Fig. 1 Discretisation of a Non-Prismatic Arch 

There would exist a set of relationships between the forces and displacements at the two 
supports and the intermediate junctions between the segments. On assembly of these 
relationships, enough simultaneous equations would be developed to solve for the unknowns. 

We know this is only an approximation. But we also know that almost everything in 
engineering, including foundation characteristics, material properties, loading conditions 
etc. are all approximations to some degree. Further we also know that a lot of the 
approximations can be improved by special techniques. 

For example, in the arch problem, we can improve the theoretical basis by developing the 
relationship for a circularly curved segment, and use it instead of the 

straight segment relationship. We can also subdivide the arch into a large number of 
segments (straight or curved), and asymptotically approach the original arch geometry - 
although at considerable additional computational effort and time, which of course usually 
translates into money. 

The same technique can be adopted for “continua”, that is structures or systems that cannot 
be by lines, but consist of solids which at best can be represented as planes. 

(a) (b)



Thus if we had an odd-shapped plate with a circular hole in it, supported at certain points 
around its edge, and subjected to some in-plane forces , as in Fig. there is no 
way we could solve for the stresses and deformations in it by any classical method. 

Fig. 2 Plate With Hole, and Finite Idealisation; t and are Different 
Thicknesses 

But we could divide the plate into a finite number of pieces, or “elements” (as against the 
infinite number of particles it comprises- and hence the term “finite elements”), as shown in 
Fig. and analyse the plate as an assemblage of the elements. The elements could be of 
any convenient simple shape such as the triangle or the Quadrilateral, and would be 
considered to be connected to one another or to supports, only by the corners or at other 
reference points along their edges, such connection points being termed “nodes” 

3.  DISPLACEMENT FORMULATION 

The simultaneous equations governing the behaviour of structures or continua may be 
formed on the assumption that some quantity is the primary unknown. In frame analysis, there 
are two broad options namely the “stiffness method’ in which the displacements (deflections 
or rotations) are the primary unknowns, and the “flexibility method” in which the redundant 
actions (forces or moments) are the primary unknowns. In the finite element method, the 
analog of the former, namely where the nodal displacements are the primary unknowns, is the 
more common because of the ease of formulation and convenience for computerisation. 

In both frame (or truss) analysis and finite element analysis, the reference directions for 
various possible forces and moments (and corresponding deflections and rotations) at the 
joints or nodes are of freedom”, and abbreviated The beam element 
of able to take onlyshear and moment at any section, has two DOF per joint, and four 
DOF for both ends of the member. The actions are marked A , A , A and the 
corresponding displacements are denoted D , D D D 4. Likewise, the straight segment 
of the arch (or of any plane frame for that matter), has horizontal, vertical, and rotational - or 
equivalent axial, transverse, and rotational - DOF at each end, totalling to six DOF, marked 



2, 6 in Fig. for the member. A plane triangular element subject to horizontal and vertical 
forces or deflections at each vertex as in Fig. has two DOF per node for all three nodes, or 
six DOF. 

Fig. 3 Degrees  of Freedom for (a) Beam, (b) Frame Member, and 
Plane Triangle 

In general the action at any DOF of an element is a function of the displacements at all the 
DOF for the element. For instance, in the beam of Fig. we have, from classical structural 
theory, 

where, C = 

Modulus of Elasticity, and I and L being the moment of inertia and length of the beam. 
, C , C and C 4 with E being Young's 

All the four simultaneous equations in Eq. (1) may be compactly represented in matrix form as: 

m 



and the subscript m, refers to the member of element. 

It may be noted in passing that all stiffness matrices will be square and symmetric about the 
diagonal. 

When a number of beam segments or elements A, B, are assembled to form a continuous 
beam as in Fig. 4, the individual stiffness relationships, 

get “coupled” in the sense that actions corresponding to the common DOF add, and 
displacements corresponding to the common DOF are equal. 

A 

Fig. 4 Continuous Assembled from Three Members 

For instance, from element A, and the third of Eq. we have: 

and from element B, and the first of Eq. we have: 

But as 3a and 1 b refer to the same DOF number 3 on the structure, equilibrium of forces 
requires, 



and compatibility of displacements requires, 

On substitution of Eq. (8) into Eqs. (5) and and of the result into Eq. we get, 

2b 
C D + 

5 

Similar relationships may be written for all the DOF in the structure or system, and expressed 
in matrix form as: 

where the absence of subscripts denotes that the matrix equation refers to the entire system. 

For a system with n DOF, Eq. (1 0) consists of n simultaneous equations relating actions A 
A2 , A to displacements D , , D 

In the continuous beam problem of Fig. 4 with a total of 8 DOF, displacements at the 
supported DOF, such as D , and are known, and soaretheapplied actionsalong 
the unsupported DOF, namely , , , and The incorporation of the known 
displacements and the solution for the unknown displacements in Eq. (1 0) follow standard 
procedures, and are very elegantly carried out on digital computers. We will not pursue that 
aspect of the analysis further. 

It must be reiterated however that the stiffness method or displacement formulation outlined 
here is precisely what preceding generations of structural engineers have known and used as 
the Slope Deflection Method. Matrix algebra only made the organisation and manipulation of 
the numbers more efficient, and the computer simply enabled much larger problems to be 

and more accurately than before. 

In the preceding development, once the beam stiffness matrix Eq. (3) became available, the 
subsequent steps of the assembly of structure stiffness matrix and of the solution, are very 
general and independent of the nature of the structure. 

Exactly the same arguments and procedures would apply to any other structure such as a 
truss or a frame, and, in fact to any other plate, shell, solid or other supported and loaded 
system which may be considered to be composed of separate elements. Thus, once frame 
analysis by matrix computer methods has been understood, the transition to finite element 

be relatively easy. 



5. ELEMENT STIFFNESS 

The transition to finite be trivial in fact, if thestiffness matrixforageneral finite 
element could be developed from fundamental principles. 

In the case of “line elements” such as beam segments and truss members, the stiffness 
coefficientssuch as C , C ... in Eq. (1) could be rigorouslyderived from classical strength of 
materials. But in case of element” such as a triangle or quadrilateral in Fig. 
the action-displacement behaviour cannot be quantified from principles of continuum 
mechanics; the one possible exception would be a rectangle of constant thickness, but this 
alone would not be of much use. 

It is interesting to trace how the development of digital computers served to catalyse the 
development of finite element theory. In pre-computer times, the analysis of frames and other 
“discrete” structures (consisting of line elements) was usually limited to a few unknowns, 
either by a wise choice of the solution rechnique, or by the use of approximations, so as to 
keep the solution to within manually manageable limits. Even for very large structures such as 
the Empire State Building in New York, iterative methods such as moment distribution 
sufficed to avoid solution of simultaneous equations in too many unknowns. At that time, any 
research or development in the area of finite element analysis was purely an academic 
exercise. Two rectangles set together would result in six nodes, and even with two DOF per 
node, there would be twelve simultaneous equations! There was thus no practical incentive to 
think about the stiffness matrices of continuum elements. 

All these changed with the debut of the digital computer into the engineering scene in the 
fifties. Suddenly, the number of simultaneous equations to be solved was no more a problem. 
Very soon, hundreds of simultaneous equations could be solved within minutes. (Today, 
thousands can be solved in a much shorter time.) Almost immediately, there was a push to 
develop the finite element capabilities to take full advantage of the new computational power 
that became available. The pursuit of finite element stiffness matrices became a “gold rush”. 

While it became clear that no “exact” governing equations could be generated for general 
finite element shapes from classical mechanics, investigators were quick and daring 
enough to make assumptions on displacement or stress variations (or “fields”) over simple 
element shapes, based on their theoretical knowledge and practical experience, (1 0). 

For instance, the simplest logical assumption for the displacement field over a triangle IJK 
under plane loading as in Fig. will be that the displacement of any genera! point P varies 
as a linear function of its y 

ax+ 
dx+ 

in which, u and v are the displacements parallel to the x and y axes, and a, b, ... fare coefficients 
called “displacement functions”. 

By application of Eq. (1 1) to the nodes I, J and K, and solution of the unknown coefficientsa, b, 
f in terms of the nodal coordinates xi, we can write the general displacement as 

functions of the nodal displacements u , v , as: 

+ N .  v .  
J J  



in which N , are known as “shape functions”, involving the shape or geometry of the 
element. 

In due course, very interesting techniques were developed to generate shape functions 
directly, rather than start with displacement functions. 

Beyond the shape function, the mathematics gets a little tricky-not complicated, but 
somewhat tedious and requiring a background of advanced calculus and matrix alegbra. We 
will not try to develop the formulas further, but only trace the logic of the subsequent steps, 

The external work done on the element by the nodal forces such as X , Y , in Fig. 
involves the sum of the products of the applied forces and the corresponding nodal 
displacement components. 

The internal strain energy stored in the elements invloves the sum of the products of the 
strains and stresses in an infinitesimal volume of the element, integrated over the entire 
region of the element. In simple casessuch as with Eq. (1 the integration may be carried out 
explicitly, but in the more complicated cases, the integrals must be evaluated numerically. 

Now, strains are first derivatives of the displacements. In the simple case of the linear 
displacement functions represented by Eq. (1 the first derivatives of u and v with respect to 
x or y are constants, that is, the normal and shear strains are constants. In fact for this 
reason, the six DOF triangle is known as the “Constant Strain Triangle” short. With 
the use of shape functions such as Eq. strains may be written in terms of nodal 
displacements. 

Stresses are related to strains through the material properties such as Young’s Modulus of 
Elasticity and Poisson’s Ratio, and thus the stresses also become functions of the internal 
displacements and hence of the nodal displacements. 

Thus, the strain energy can be finally reduced to expressions involving the element geometry, 
material properties, and nodal displacements. 

If now the external work and internal energy are equated, and some cute algebraic tricks are 
performed, we can manage to get the stiffness matrix for the element as functions of the 
element dimensions and material properties, in the same form as before: 

As an example, the first term of the element stiffness matrix for a CST will be: 

= - 2 + 2 

1 

where p is Poisson’s Ratio, and t and Tare thickness and area of the triangle. (The other terms 
are equally bad or worse!) 

After the general methodology was developed on the basis of the investigators used 
considerable intuition, imagination and ingenuity to develop stiffness matrices for other 
shapes such as the rectangle and quadrilateral in plane stress or plane strain: and extend 
their use to axisyrnmetric solids, and to develop three-dimensional elements such as the 
tetrahedron (pyramid) and the (six-sided block). Nodes located on the edges 



and/or on the faces of the element, between the corners, permitted curved boundaries and 
more elaborate shape functions, leading to better stress representations. Plate bending 
elements, shell elements, etc. soon followed. Figure 5 shows some typical elements. 

Fig. 5 (a) to (e) Plane Elements; ( f )  and Solid Elements; 
Axisymmetric Element; ( i )  Plate Bending Element. 

(Double Arrowheads are Rotational DOF'.) 

Many early investigators did pioneering work and kept coming up with newer and better 
elements. Their contemporaries and a few succeeding generations of post-graduate stu- 
dents got for refining existing elements and proposing fresh elements. By the late 
sixties however, the technique had become so commonplace that most further developments 
rated only master's degrees. Almost all the efficient stiffness matrices for different kinds of 
elements are available from books 10) and reports. Even today, marginal improvements 
in finite element stiffnesses are being pursued, but with the findings only being published in 
the technical journals. 

Needless to say, the actual development of a "good" stiffness matrix requires 
sophistication and skill. But practising engineers and others among us who just want to use 
the finite element method (and not advance the state of the art in the theory!) do not need to 
bother about the derivation of stiffness matrices. Instead we can treat them like the latest 
cameras: they are available, they do a lot of useful things and give us a lot of satisfaction, 
without our knowing how exactly they get the exposure and even the focus right. But of 
course, we must know how to use them right! 

6. APPLICATIONS 

As soon as the the streets" and became public knowledge in the late fifties, research 
and development engineers started applying the method, first to aeronautical structures 
such as wings and fuselages, and then to civil engineering structures such as dams and 
tunnels. As more and more elements were developed, and simultaneously bigger and faster 
computers became available, there was an information explosion on the finite element 
method, and a feverish (if not mad) scramble to apply it to all kinds of practical problems. In 
fact, the method actually created the demand for more - a solution looking for 
problems, so to speak. 



In the last two decades or so since the method first became popular, thousands of papers and 
hundreds of reports have been published and presented, on the applications of the method, 
and this is just the beginning. One cannot open a bookora journal, or attend any conference, 
in civil, mechanical, materials, aerospace, automobile, and many other engineering dis- 
ciplines, without running smack into it. From a researcher's plaything, the method has 
become the standard analytical and design tool for construction, manufacturing and testing 
organisations, and has also invaded government public works departments. 

To give it its due, the method is more than a passing fad or popular craze. It has opened up a 
whole new world of analysis, design, testing, and simulation. Because the method is 
applicable with nearly equal ease and validity to any geometry, material, support, and loading 
combinations and variations, it is enabling investigators not only to take a fresh look into 
existing theories (and end up disproving or at least modifying them as soon as confirm them), 
but also to venture into completely new, uncharted territory. 

It would be an impossible task to even list all the applications of the method. To make a 
general statement, it is equally at home in: 

static and dynamic analysis; 

concentrated and distributed loading; 

gravity and magnetic fields; 

linear and analysis; 

elastic, elasto-plastic, visco-elastic, and plastic analysis; 

creep and thermal analysis; 

instability and crack propagation; 

homogeneous, layered, and heterogeneous media; 

isotropic, orthotropic, and anisotropic materials; 

etc. etc. 

The method has been applied extensively to foundations, shear wall buildings, and shell 
roofs, and to bridges of novel design, expanding the freedom of the architect and the power of 
the designer by many orders of magnitude, (2, 10). It has been used, by the author among 
others, to analyse things as small as the human tooth (Fig. 6), and as large as the nuclear 

7), (1). Ships on the high seas, and rockets to the moon have been designed by it. 
Car bodies are safer, and turbines run better, because of it. 

Its applications do not stop with structural and stress analysis. The same technique of 
establishment of governing relationships for a general element, discretisation of the region 
into many finite elements, and computer assembly and solution of the resulting simultaneous 
equations, has been applied to heat and sound, to fluid and gaseous flows, as well as to their 
interactions with each other and with solids, (2, 3, 10). So there are innumerable other 
applications from non-structural mechanics fields: pumping of blood by the heart, dispersion 
of effluents at tidal basins, thermal inversion due to atmospheric you name it, and 



chances are that it has already been analysed by the finite element method. 

Fig. 6 Finite Element Modelling of Human Tooth 

Fig. 7 Finite Element Modelling c One-Twelfth Symmetry S e g m e n t  of Top 
Half of Prestressed Concrete Nuclear Reactor Model. = steel) 

An aspect which bears reiteration is the ability of the method to simulate entire phenomena as 
against a single situation for analysis. Events can be made to happen inside the computer in 
the order and manner in which they actually take place in real life. Combined with its capability 
to cover macrospically large domains as well as enter into microspically small details, an 
investigator can discover a lot that was not known before, about the behaviour of many 
engineering operations on which much had been assumed. The author applied such 
simulation to the process of pretensioning bolted connections and then subjecting them to 
external loading, and discovered that the “prying forces” that had been postulated to be 
present in such connections were not at all critical, (5, 6, 7). As a result of this simulation 
applied to parameter studies, he was able to propose a design procedure for a particular 
(“end-plate”) connection that saved about 40 percent in material and related labour, (5). 



7. PROBLEMS AND PITFALLS 

Now for the bad news. Before we get too carried away by the awesome power and exciting 
potential of the finite element method, it is appropriate to the few but critical dangersof 
possible misunderstanding or misuse of the method. 

There are basically two major sources of problems in the application of the method, especially 
in the use of a finite element program by the novice. (We will assume that the program and 
input data are completely error-free, and that the computer capacity and precision are 
adequate.) 

The first problem is in the very nature of the finite element method, namelythe approximations 
used in the development of the element stiffness. No element can be all things to all people, 
no element can represent all possible behaviour patterns equally well; compensation in one 
aspect often causes distortion of another. The ideal model of anything is itself; and nature 
too complex, too devious, to be so strait-jacketed by scientists. What it all adds up to is that we 
should know what a particular element is capable of, and must not expect more from it. 

Thus, for instance, we might run a plane stress analysis with 500 CST elements, and still not 
get as accurate answers as another run with 100 elements more refined, as indicated in Fig. 8. 
Further, if we did not know what element we were using, and tried doubling the number of CST 
elements to 1000, we might get a new answersufficientlyclose afew percent of) 
the earlier one, so that we would be fooled into thinking we were getting close to the “exact” 
value, while it might actually be worse than the result from the coarser mesh of more refined 
elements! On the other hand, doubling the number of refined elements to only200 would get 

Cri t i  
Stress  

element 

Refined 

0 100 200 

Number of 
t 

Fig. 8 Convergence Capabilities of Different Elements 

us even closer to the exact value. In short, apparent, asymptotic convergence is no test of 
absolute accuracy of the solution. An element cannot represent certain situations any better. 
In the example of photography cited earlier, one limitation could be the resolution of the lens, 
so that, whatever fine grain film or special processing we used, the particular lens just would 
not give any better enlargements beyond a certain limit. 



The second difficulty is even more insidious. We might give the same program and the same 
frame problem to half a dozen structural engineers, and they would all get the same answer, or 
if there were some judgement involved (as with non-prismatic members or nonlinear loading 
patterns) answers differing only slightly from one another. 

But if we gave the same finite element program and the same continuum problem to the six 
engineers, chances are we would get six different sets of maximum displacements and 
stresses. The range, in complicated situations, could be 100 percent variation or more! Who 
would be right? Perhaps none. 

The trouble is, finite element is as much an art as a science. In a sense, two different solutions 
by a finite element program may be likened to different designs by two engineers. But unlike 
the two designs, one or both the finite element solutions may not be safe. 

The major variable in  finite element analysis is the mesh, implying both the number of 
elements, as well as their distribution. It is well known that the finer the mesh, the better the 
answer. But finer meshes involve more input data, the preparation of which will get more and 
more tedious, time-consuming, and (most importantly) error-prone. If a large number of 
problems of the same kind must be solved, a good tactic is to write a which, 
with the input of afew key dimensionsand the number of divisionsalong different directions in 
various regions, would automatically generate the node and element data for the finite 
element program in the sequence and format needed. 

But how fine a mesh is fine enough? Ideally, one should start with a good element that would 
represent the anticipated behaviourwell, and analyse the problem with two or more meshes, 
so that the progressive improvement of critical values would not onlygive an indication of the 
relative precision of the meshes, but also provide enough information to extrapolate to a 
better estimate. 

While this sounds straight-forward enough, it is very rarely possible in real situations. 
Computer resources are expensive; moreover, however big the computer, there are limits to 
the number of simultaneousequations it can solve in a reasonable time, and acertain 
accuracy. Except perhaps in universities where the pursuit of truth may overweigh costs, and 
in space and other research organisations in which concern for human safety is paramount, 
computer costs set a realistic ceiling over our ambitions on one good mesh, let alone on a 
series of meshes. 

Nodes and elements thus become like dollars in our bank accounts. Judiciously used, the 
rewards are great. Misused, we may not only get nothing, but also get into trouble! six 
answersfrom our panel of engineers could well be to the same impressive number of decimal 
places from the same giant mainframe computer, but there would be no guarantee anyone of 
them was sufficiently close to the correct value. 

The author can present one of the examples from his experience where this situation was 
dramatised, (4). The U.S. Atomic Energy Commission wished to determine the maximum 
stress in a nuclear pipe-nozzle junction; the author did a three-dimensional finite element 
study on it, with three different meshes, consisting of 504, 11 70, and 21 12 nodes. (The 
number of simultaneous equations were three times the number of nobes in each case.) Iso- 
stress lines of the critical circumferential (“hoop”) stress across the longitudinal section were 
plotted for each case, as shown in Fig. 9. The maximum stress, at the inner corner, may be 
seen to be about 5000,6000, and 6500 psi (Ibs. per sq. in.), that is, 34500,41400, and44800 

respectively, a range of variation of 23 percent with respect to the largest value, vividly 



C O N T O U R S  IN 

DIMENSIONS IN I N C H E S  

Fig. 9 Effect of Mesh on Stress Concentration in Junction 

demonstrating the mesh effect. Not content to take of 6500 psi from the finest mesh 
(8 percent away from the medium mesh value), the author did some fancy extrapolation, and 
worked out the result for the continuum (namely for infinite number of elements) as 6700 psi 
or 

It is obvious in this example, that if computer resources had limited the analysis to the coarse 
mesh, the result would have been an underestimate of at least 25 percent below the best 
prediction. How could anyone have foreseen (at the time) that it would take a mesh of more than 
6000 DOF, running longer than three hours CPU (Centre Processing Unit) - actual time all 
night - on an IBM to achieve a solution that would come to within 3 precent of the 
estimated “exact” value for the continuum? 

Incidentally, a lot of preliminary study had gone into the pipe-nozzie analysis. The final meshes 
chosen reflected the knowledge gained from the earlier studies, such as the effectiveness of 
more elements being crowded around bend than in the straights. Without such preliminary 
studies, without results from three meshes to extrapolate from, or alternatively, without the 
benefit of similar experience earlier, the finite element analysis would not have been of any 
practical value. 

The photographic analogy for this situation would be the portrait of an unknown person with an 
untested close-up lens, from which one could not tell if the bulging nose was the way it was, or 
the result of distortion by the lens. Indeed, if for a complicated problem any one offered the 
result from a single mesh without being able to back it up with other evidence or credible 
experience, we would be well advised to take out a lot of insurance! 

There are other trouble-spots such as “aspect-ratio” of the longer to smaller dimension of 



elements, and as with triangular elements. However, these are easier to guard 
against than the problem of the proper mesh size and distribution. 

Apart from the difficulties already referred to, finite element analysis involves more decisions 
in the reduction of a physical problem toacomputer model, than almost any other engineering 
analysis. Can a two-dimensional analysis adequately represent the behaviour of a system that 
should be ideally investigated by the much more expensive three-dimensional analysis? 
Should the total system be analysed (- in fact, what is the total system? -), or can we get away 
with the analysis of just the portion judged critical? If the latter, what boundary or loading 
conditions should be assumed at the interface? Finite element modelling, including the mesh 
layout, is where expertise would be most needed, and where lack of experience could lead to 
the direst consequences. 

Evidence of the lack of guidelines in the matter and of the difficulty of developing such 
guidelines may be seen in the fact that a committee of experts of the American Societyof Civil 
Engineers has laboured for two years, and only now completed the first draft of a review of 
finite element modelling problems and a list of rules!) to detect and alleviate 
them. 

So how does a newcomer get a head-start? Personal experience is a slow and long road. 
from, orworking with a‘guru’, an experienced master, would be agood way to start. If 

possible, for complex problems where no prior experience is available, various meshes (with 
different sizes and distribution) must be tried and the results extrapolated to get the best 
estimate. A simplified version of the problem, for which some kind of solution or expertise 
already exists, may be analysed with a certain mesh, and the results compared - in the hope 
that the complex problem with an analogous mesh would not fare much worse. 

Existing analytical or experimental results on similar problems would provide a basis for the 
evaluation of finite element results. But here, an interesting situation may develop: the finite 
element results may not be necessarily wrong if their agreement with analytical or test results 
is not perfect. On the other hand, perfect agreement of a finite element solution with a 
particular theory or test may itself be suspicious. It sounds paradoxical, but once a finite 
element has certain basic capabilities, its use in a well conducted analysis could present a 
truer picture of the actual behaviour than theories based on certain simplifying approxi- 
mations or tests susceptible to experimental and human errors. A case in a point is in the 
analysis of a short-span beam: The simply theory of bending, likely to be used for the 
evaluation, ignores shear deformations and shear lag. But a 3D finite element analysis, not 
inhibited by the assumptions of the theory, would give better answers which however would 
disagree with the theoretical results. 

Finally, when all the decisions are made and all the analysis is done, there remains one last 
problem: namely the interpretation of the output. Even frame analysis of a multi-storey 
building would produce a stack of output, but all the numbers would be meaningful, directly 
useful - so much axial force, so much shear, so much moment, etc. 

But even a small problem in finite element analysis would generate so many numbers that 
very few would have the patience to look at all of them - especially if they knew that the stress 
at a node calculated from the four elements meeting at that node could have four different 
values, often differing wildly. Not always is the average meaningful or correct; for instance the 
stress at a node at the junction of a bolt head and its shank, would be compressive from the 
element in the head, but tensile from the adjacent element in the shank. Here, automation of 
the averaging process would have not only resulted in murder but also destroyed the 



evidence! Selective use of post-processors, particularly graphical representation of dis- 
placements and stresses would be very useful; but post-processors, like pre-processors, 
must be tailored to specific applications, and also require special expertise to develop. 

Of course, every one of the obstacles mentioned herein can be overcome, side-stepped, or 
compensated for, by appropriate counter-measures, and avery reliable answer can usually be 
extracted. The difficulties have been described in gory detail, only to emphasise the pitfalls of 
the method, to demonstrate that accuracy cannot be taken for granted even with the best 
program and the biggest computer, and to highlight the large degree of skill and experience 
needed in using the method to solve complicated practical problems. 

8. CONCLUSION 

For engineers interested in applying the finite element method, it is not necessaryto know all 
the theoretical details. But it is essential to know the major assumptions on which the 
development is based. In any engineering analysis, it is important to know the significance of 
the approximations built into the computer programs) used, and the limitations 
of the analytical models developed. In finite element applications this knowledge can make 
the difference between a good answer and a bad disaster. 
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